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Abstract. We analyse the baryon mass spectrum in a framework which combines the 1/Nc expansion
with chiral perturbation theory. Meson loop contributions involving the full SU(3) octet of pseudoscalar
Goldstone bosons are evaluated, and the influence of explicit chiral and flavor symmetry breaking by
non-zero and unequal quark masses is investigated. We also discuss sigma terms and the strangeness
contribution to the nucleon mass.

PACS. 14.20.-c Baryons (including antiparticles) – 11.15.Pg Expansions for large numbers of components
(e.q., 1/Nc expansions) – 12.39.Fe Chiral Lagrangians

1 Introduction

The large Nc limit, where Nc is the number of colors, is
a useful device to understand many systematic features
of baryon properties [1,2], such as the 1/Nc scaling of
various physical quantities. In a series of papers, Dashen
and Manohar [3,4], and Jenkins [5] have discussed the
1/Nc structure of baryon properties, and the framework
for combining chiral symmetry with the large Nc aspects
of QCD has been developed by many authors [6–12]. In
[7,10], the baryon octet and decuplet mass spectra were
discussed in this framework and the baryon mass relations
were derived. However, although those works successfully
reproduce mass relations at tree level, they do not com-
pute all possible terms allowed by the chiral and large Nc
expansions.

The baryon mass spectrum was re-examined in con-
ventional baryon chiral perturbation theory by Borasoy
and Meissner [13,14]. To compute the baryon masses to
order m2

q, where mq is the quark mass, the decuplet de-
grees of freedom are integrated out to give counter terms,
and some low-energy constants are determined from reso-
nance saturation. However, when we work with the 1/Nc
expansion, the octet and decuplet states are degenerate at
the leading order, and the decuplet fields must be treated
explicitly.

In this paper, we re-examine the baryon masses in
chiral perturbation theory taking into account the 1/Nc
counting based on the techniques developed in the litera-
ture, e.g., in [9–11]. This enables us to investigate the 1/Nc
? Work supported in part by BMBF
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structure of the baryon properties and the meson-baryon
interactions in a systematic way. The baryon axial current
matrix elements and the strangeness contribution to the
nucleon mass are computed as well. Some of these topics
were discussed in the literature [7,10,11] focusing on the
leading order terms in 1/Nc expansion (up to one loop
corrections). In this paper, we perform the calculations
to the next orders and discuss a difficulty which arises
in computing the one loop corrections in a way which is
consistent with the 1/Nc expansion. This paper is orga-
nized as follows. In the next section, we briefly discuss
the formalism of this approach. In Section 3, we compute
the baryon axial current up to one-loop corrections. The
baryon mass formulas are given in Section 4. The one-
loop corrections to the baryon masses are calculated in
Section 5. We discuss the strangeness contribution to the
nucleon mass and the sigma term in Section 6 and then fin-
ish with a summary and conclusion in Section 7. Explicit
expressions of baryon wave functions and some detailed
formulas are given in Appendices.

2 Formalism

We start with a brief review of the construction of baryon
states in the large Nc limit, referring to [9,10,15] for fur-
ther details. The baryon states with Nc quarks can be
written as follows:

|B〉 ≡ Ba1α1...aNcαNc εA1...ANc

× q†a1α1A1
. . . q†aNcαNcANc |0), (2.1)

in particle number space, where ai are the flavor indices,
αi the spin indices and Ai the color indices. The quark



364 Y. Oh et al.: Baryon masses in large Nc chiral perturbation theory

creation and annihilation operators q† and q satisfy the
usual anti-commutator relations for fermions. The sym-
metric tensor B is characteristic of each given baryon wave
function. Since the baryons are in color-singlet states, how-
ever, it is more convenient to work with

|B) ≡ Ba1α1...aNcαNcα†a1α1
. . . α†aNcαNc |0), (2.2)

by dropping the explicit color indices, where the operators
α† and α are bosonic operators satisfying the usual com-
mutator relations. For short-hand notation, we label the
quark operators as

α1 ≡ αu↑, α2 ≡ αu↓, α3 ≡ αd↑,
α4 ≡ αd↓, α5 ≡ αs↑, α6 ≡ αs↓, (2.3)

so that α†1 creates u-quark with spin-up, and so forth.
There is an ambiguity when we extrapolate the physi-

cal baryon states to large Nc. As in the literature, we keep
the spin, isospin and strangeness of baryons as O(1) in the
large Nc limit. For example, the nucleon state in large Nc
limit has spin 1/2, isospin 1/2 and no strangeness. This
can be done by acting with spin-flavor singlet operators
on the physical baryon states. For example, the proton
spin-up state can be written as

|p,+1
2 ) = CNα

†
1(A†s)

n|0), (2.4)

where n = (Nc − 1)/2 and CN is the normalization con-
stant. The spin-isospin singlet operator A†s is defined as

A†s = α†1α
†
4 − α†2α†3. (2.5)

One can easily verify that this state reduces to the usual
quark model state in the real world with Nc = 3. The
complete list of the baryon octet and decuplet states can
be found in Appendix A.

Next we define a one-body operator {X} in spin-flavor
space as

{X} = α†aαX
αβ
ab αbβ , (2.6)

so that its expectation value on baryon states is at most of
O(Nc). In a similar way, one can define 2-body operators
{X}{Y } and 3-body operators {X}{Y }{Z}, and so on.
Then, it is found that the coefficient of an r-body operator
is at most O(1/Nr−`−1

c ), where ` is the number of inner
quark loops [9,16]. This enables us to treat the coupling
constants as O(1) quantities in the large Nc expansion by
writing the Nc-dependence of the operators explicitly.

By direct evaluation, one can see the well-known com-
mutator relation,

[{X}, {Y }] = {[X,Y ]}. (2.7)

Note that the left-hand side is naively a two body operator
whose expectation values can be of O(N2

c ), whereas the
right-hand side is a one-body operator whose expectation
values are of O(Nc) at most. This means that the order
of an operator in 1/Nc counting reduces when we have a
commutator structure as in (2.7). This plays an important
role in the large Nc analyses of the baryon properties.

We will discuss the explicit forms of some operators
which appear in the calculation of baryon axial currents
and masses in the next Sections.

3 Baryon axial currents

3.1 Tree level

Our starting point is the chiral meson-baryon effective La-
grangian. Baryon matrix elements of this Lagrangian in-
volve the meson-baryon interaction in the following form:

〈Leff〉 = g (B|{Aµσµ}|B)

+
h

Nc
(B|{Aµ}{σµ}|B) + . . . , (3.1)

where σµ is the baryon spin matrix,1 and the dots denote
higher order terms. The axial field Aµ is defined as

Aµ =
i

2
(ξ∂µξ† − ξ†∂µξ), (3.2)

where ξ = exp(iΠ/f) with the meson decay constant f .
The SU(3) matrix field Π represents the octet of pseu-
doscalar Goldstone bosons. It is defined as

Π =
1
2
λaπa, (3.3)

with the usual Gell-Mann matrices λa (a = 1, . . . , 8). In
(3.1), the Nc factors of operators are given explicitly, and
the coupling constants g and h are of O(1) in the 1/Nc
counting.

Then the baryon axial current Ja5,µ reads

Ja5,µ =
g

2
{T̃ aσµ}+

h

2Nc
{T̃ a}{σµ}, (3.4)

from the Lagrangian (3.1) with

T̃ a =
1
2

(ξλaξ† + ξ†λaξ). (3.5)

This gives its matrix elements as

(B′|Ja5,µ|B) = αaB′BūB′(σµ)uB . (3.6)

where uB is the Dirac spinor of the baryon and

αaB′B = g(B′|{ 1
2λ

aσ3}|B) +
h

Nc
(B′|{ 1

2λ
a}{σ3}|B), (3.7)

at the tree level.
By using the wave functions given in Appendix A, we

can compute the baryon axial current straightforwardly.
A naive investigation of each term gives that, despite the
1/Nc factor, the h term contribution is expected to be
of the same order as that coming from the g term. This
is because the h term contains a 2-body operator whose
expectation value can be O(N2

c ), thus the leading order
of the h term contribution can be of Nc. However, close
inspection shows that the g term contribution dominates,
because the h term contains the operator {σµ} and our
baryon wave functions satisfy {σµ} ∼ O(1).

1 In the baryon rest frame, σµ = (0,σ) with the usual Pauli
matrices σi.
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The explicit forms of the relevant operators are

{ 1
2λ

1+i2σ3} = α†1α3 − α†2α4,

{ 1
2λ

4+i5σ3} = α†1α5 − α†2α6,

{ 1
2λ

1+i2}{σ3} = α†1α3 + α†2α4,

{ 1
2λ

4+i5}{σ3} = α†1α5 + α†2α6, (3.8)

so that we obtain

α1+i2
pn =

g

3
(Nc + 2) +

h

Nc
,

α1+i2
ΛΣ− = α1+i2

Σ+Λ =
g

3
√

2

√
(Nc − 1)(Nc + 3),

α1+i2
Ξ0Ξ− =

Ncg

9
− h

Nc
,

α1+i2
Σ0Σ− = −α1+i2

Σ+Σ0 =
g

3
√

2
(Nc + 1) +

√
2h
Nc

, (3.9)

and

α4+i5
pΛ = −g

2

√
Nc + 3− h

2Nc

√
Nc + 3,

α4+i5
ΛΞ− =

√
Ncg

2
√

3
+
√

3h
2Nc

√
Nc − 1,

α4+i5
pΣ0 =

1√
2
α4+i5
nΣ− =

g

6

√
Nc − 1− h

2Nc

√
Nc − 1,

α4+i5
Σ0Ξ− =

1√
2
α4+i5
Σ+Ξ0

=
5g

6
√

3

√
Nc + 3 +

h

2
√

3Nc

√
Nc + 3. (3.10)

These results show that the h term contributions are sup-
pressed as compared to those of the g terms as we dis-
cussed above. We can also find that the leading order of
α1+i2
BB′ is O(Nc), whereas α4+i5

BB′ , which changes the baryon
strangeness, is O(

√
Nc). This shows that the strangeness-

changing (i.e., ∆S 6= 0) baryon axial currents are sup-
pressed as compared to the strangeness-conserving (i.e.,
∆S = 0) baryon axial currents by O(

√
Nc). This can be

understood from (3.8) by noting that the number of u,d
quarks in the baryon wave functions is O(Nc) whereas that
of s quark, i.e., strangeness, is O(N0

c ). For example, in the
case of α1+i2

pn , acting with α3 (or α4) on the baryon state
gives the factor Nc, and the inner product of initial and fi-
nal baryon wave functions with the proper normalization
constants gives O(1), so that α1+i2

pn is O(Nc). However,
for α4+i5

pΛ , the action with α5 (or α6) gives O(N0
c ) be-

cause our baryon wave functions have the strangeness of
O(N0

c ). Since the normalization constants of nucleon and
Λ are O(1/Nc) and O(1/

√
Nc), respectively, we have an

additional factor
√
Nc in the calculation of α4+i5

pΛ , which
implies that the order of α4+i5

pΛ is O(
√
Nc).

Since the contributions of the h term are suppressed
as compared to those of the g term by O(1/N2

c ) for the
∆S = 0 axial currents and by O(1/Nc) for the ∆S = 1
axial currents, we can neglect the h term up to next to

leading order. At this order, when we fix Nc = 3, we can
recover the quark model relation [10],

D = g, F =
2
3
g, (3.11)

by comparing with the results of the baryon chiral per-
turbation theory [17,18] in addition to the quark model
predictions

C = −2g, H = −3g, (3.12)

for the octet-decuplet-meson and decuplet-decuplet-
meson coupling constants, C and H, defined as in [19].
When we go further in the 1/Nc expansion, we must in-
clude the h term, and we get the modified relations,

D = g, F =
2g + h

3
, (3.13)

as found in [10].
We also compute α8

B′B by using

{ 1
2λ

8σ3} =
1

2
√

3
(N1 −N2 +N3 −N4 − 2N5 + 2N6),

{ 1
2λ

8}{σ3} =
1

2
√

3
(N1 +N2 +N3

+N4 − 2N5 − 2N6), (3.14)

where we have introduced Ni = α†iαi. This leads to

α8
pp =

g

2
√

3
+

h

2
√

3
,

α8
ΛΛ = − g√

3
+

h

2
√

3

(
1− 3

Nc

)
,

α8
ΣΣ =

g√
3

+
h

2
√

3

(
1− 3

Nc

)
,

α8
ΞΞ = −

√
3g
2

+
h

2
√

3

(
1− 6

Nc

)
. (3.15)

From these results we find that the leading order of α8
B′B is

O(N0
c ) and that the h term provides a leading contribution

together with the g term. This is because the expectation
values of {1

2λ
8}{σ3} are O(Nc) whereas those of { 1

2λ
8σ3}

are O(1). So we conclude that in order to get a consis-
tent result on α8

B′B , one should consider n-body (n ≥ 3)
operators in general unless their coupling constants are
suppressed. From the fitted values of D and F , one can
estimate g = 0.61 ∼ 0.8 together with h = −0.02 ∼ −0.1,
which shows that h is indeed small, less than 15% of g,
but with opposite sign [10]. Therefore, one should keep in
mind the contributions from n-body (n ≥ 3) operators in
the calculation of α8

B′B . We have a similar situation when
we compute the η-meson loop corrections to the baryon
masses in Section 5.

3.2 One-Loop Corrections

The one-loop corrections to the baryon axial current in
large Nc chiral perturbation theory as shown in Fig. 1 have
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Fig. 1. One-loop corrections to the baryon axial current

Fig. 2. Wave function renormalization of one-loop

been discussed in [3,4,6]. Naively, these loop corrections
as they stand are not consistent with the 1/Nc expansion.
From the meson–baryon interactions (3.1), each vertex is
related to an operator Xia defined as

Xia = g{1
2λ

aσi}+
h

Nc
{ 1

2λ
a}{σi}, (3.16)

with spin index i and flavor index a. This shows that the
meson-baryon coupling is of order Nc. Because of the pres-
ence of 1/f which scales as 1/

√
Nc, each vertex has a factor√

Nc. Then from Fig. 1(a), it is evident that the one-loop
correction is O(N2

c ) when αB′B is of order Nc. Thus the
loop correction dominates the tree level. However, we have
to consider the wave function renormalization terms (Fig.
2) in the loop calculation. When combined with Fig. 1, this
gives the commutator structure to the baryon axial cur-
rent operators, which implies that the actual order of the
one-loop correction is O(N0

c ) when αB′B is O(Nc). This
suppression was proved up to 2-loop order in [20] which
concludes that the 2-loop corrections are suppressed by
1/N2

c as compared to the tree level values.

Explicitly, the one-loop correction to the baryon axial
current from Fig. 1(a) is given by the following expression:

V iaB′B =
−i
f2

∫
d4k

(2π)4

1
(k · v)2

kµkν
m2
bb′ − k2

× (B′|XµbXiaXνb′ |B), (3.17)

where mbb′(= mπ,mK ,mη) is the meson mass in the loop.
When combined with the wave function renormalization
factor ZB from Fig. 2,

ZB = 1 +
i

f2

∫
d4k

(2π)4

1
(k · v)2

kµkν
m2
bb′ − k2

× (B|XµbXνb′ |B), (3.18)

this gives the renormalized baryon axial current operator
in the form of

Xia +
1

2f2
Ibb
′

µν [Xµb, [Xia, Xνb′ ]], (3.19)

where

Iabµν = −i
∫

d4k

(2π)4

1
(k · v)2

kµkν
m2
ab − k2

. (3.20)

Finally, we get the one-loop correction to the baryon
axial current operator as

δXia =
m2
bb′

32π2f2

(
ln
m2
bb′

λ2
+

2
3

)
[Xjb, [Xia, Xjb′ ]]

− m2
bb′

32π2f2
ln
m2
bb′

λ2
Oi,bb′ , (3.21a)

by evaluating the loop integral using dimensional regu-
larization with the regularization scale λ (see, e.g., [21].),
where

Obb′µ = g{[1
2λ

b, [ 1
2λ

b′ , 1
2λ

a]]σµ}

+
h

Nc
{[ 1

2λ
b, [ 1

2λ
b′ , 1

2λ
a]]}{σµ}, (3.21a)

which comes from Fig. 1(b). So the one-loop correction to
the baryon axial current matrix elements are obtained as

δαaB′B = βa,ΠB′B
m2
Π

16π2f2
ln
m2
Π

λ2
+ β̃a,ΠB′B

m2
Π

24π2f2
, (3.22)

where Π stands for π, K and η mesons.
The explicit results of βa,ΠB′B and β̃a,ΠB′B with g terms

are given in Appendix B. From these results, we can see
that the one-loop corrections are O(1/Nc) at most since
f2 scales like Nc. Furthermore, the corrections from Fig.
1(b) are of the same order as those of Fig. 1(a).

4 Baryon masses at tree level

In this Section we investigate the baryon masses at tree
level. To estimate the baryon masses simultaneously in the
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1/Nc expansion and the chiral expansion, we must spec-
ify the relation between 1/Nc and the pseudo-Goldstone
boson mass mΠ . In this paper, we use mΠδM ∼ O(1)
where δM is the octet-decuplet mass difference. This gives
mΠ ∼ O(ε) and 1/Nc ∼ O(ε), where ε stands for a small
expansion parameter.2 A priori, there is no constraint on
the relationship between mΠ and Nc. In fact, the au-
thors of [11] used m2

ΠδM ∼ O(1). However as we shall
see below, the leading order correction to the degener-
ate baryon mass in the large Nc limit is proportional to
m2
ΠNc and we count it as O(ε). This is consistent, given

that mΠ ∼ O(ε2) in accordance with the chiral expansion,
and Nc ∼ O(ε−1). We will compare our results with those
of [11] before calculating the one-loop corrections.

The matrix elements of the effective Lagrangian which
contribute to the baryon mass can be written as

〈LB〉 =
∑
i

(B|L̃(i)
eff |B), (4.1)

where L̃(i)
eff represents that part of the Lagrangian which

can give a contribution of O(εi). Explicitly, these terms
are

L̃(−1)
eff = −a0{1}, (4.2a)

L̃(1)
eff = − a1

Nc
{σj}{σj} − b1{m}, (4.2b)

L̃(2)
eff = −α1

Nc
tr (m){1}, (4.2c)

L̃(3)
eff = − b2

Nc
{mσj}{σj} − c1{m2} − c2

Nc
{m}{m}, (4.2d)

L̃(4)
eff = − α2

N2
c

tr (m){σj}{σj} − β1

Nc
tr (m2){1}, (4.2e)

L̃(5)
eff = − c3

Nc
{m2σj}{σj} − c4

Nc
{mσj}{mσj}

− c5
Nc
{m}{mσj}{σj} − d1{m3} − d2

Nc
{m2}{m}

− d3

N2
c

{m}{m}{m}, (4.2f)

up to O(ε5), where

m = B0(ξ†mqξ
† + ξmqξ). (4.3)

We make use of the standard relations between B0 and
squared pion and kaon masses, m2

π = 2B0m̂ and m2
K =

B0(m̂ + ms), where m̂ is the average mass of u and d
quarks and ms the s-quark mass. The quark mass matrix
mq is given by

mq = m̂U +ms S, (4.4)

where

U = diag(1, 1, 0), S = diag(0, 0, 1). (4.5)

Throughout this work, we assume SU(2) isospin symme-
try with mu = md. Then, up to O(ε5), there are 15 low

2 This is consistent with the expansion of [23], where the ∆-
nucleon mass difference is treated as small parameter with the
pion mass.

energy constants that should be determined from experi-
ments. However, one can find that 6 terms give identical
contributions to all baryon masses so that 9 parameters
remain which determine all baryon mass differences. In
the following, we discuss the baryon masses at each order
of ε.

From the Lagrangian (4.2a), all octet and decuplet
baryon masses are degenerate at leading order, which gives
the baryon mass operator,

M
(0)
B = a0Nc, (4.6)

where the parameter a0 sets the scale as a “mass per color
degree of freedom”.

To the next order, the correction to the mass formula
reads

δM
(1)
B =

a1

Nc
{σj}{σj}+ 2B0m̂Ncb1. (4.7)

The a1 term gives the splitting between octet and decu-
plet while all states within the octet and decuplet are still
degenerate. Although the original form of (4.2b) includes
the operator {S}, the resulting baryon masses do not de-
pend on strangeness since the expectation values of {S}
for our baryon states are of O(1) so that its contribution
appears at the next higher order. Thus, at O(ε1), we get

δM
(1)
8 =

3
Nc

a1 + 2B0m̂Ncb1,

δM
(1)
10 =

15
Nc

a1 + 2B0m̂Ncb1, (4.8)

where M8 and M10 denote the baryon octet and decuplet
masses, respectively.

At O(ε2) there are two contributions. One is from L̃2
eff

of (4.2c) and the other is from the remaining part of the
b1 term of L̃1

eff :

δM
(2)
B = 2B0(ms − m̂)b1{S}+ 2B0(ms + 2m̂)α1. (4.9)

It is clear that the α1 term gives the same mass shift to
all baryons. The dependence of the b1 term on strangeness
results from the SU(3) flavor symmetry breaking and van-
ishes in the flavor SU(3) limit. Therefore, up to this order,
the baryon mass depends on total spin and strangeness,
but the Λ and the Σ are still degenerate.

The mass corrections at O(ε3) can be obtained as

δM
(3)
B =

2B0

Nc
m̂b2{σj}{σj}+

2B0

Nc
(ms − m̂)b2{Sσj}{σj}

+Nc(2B0m̂)2(c1 + c2). (4.10)

The b2 term involves two operators. One of them depends
on the total baryon spin and the other depends on the
spin of the strange quark(s). As a result, the Σ decouples
from the Λ at this order. Up to this order, we have 4 oper-
ators in the baryon mass formula, namely, {1}, {σj}{σj},
{S} and {Sσj}{σj}. The c1 and c2 terms give the same
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Table 1. Matrix elements of various operators for baryon states

{U} {σj}{σj} {S} {S}{S} {Sσj}{σj} {Uσj}{Sσj}
N 2n+ 1 3 0 0 0 0
Λ 2n 3 1 1 3 0
Σ 2n 3 1 1 −1 −4
Ξ 2n− 1 3 2 4 4 −4
∆ 2n+ 1 15 0 0 0 0
Σ∗ 2n 15 1 1 5 2
Ξ∗ 2n− 1 15 2 4 10 2
Ω 2n− 2 15 3 9 15 0

Ξ̃ 2n− 1 3 2 4 −2 −10

Ω̃ 2n− 2 3 3 9 5 −10

Σ̃∗ 2n 15 1 1 −3 −6

Ξ̃∗ 2n− 1 15 2 4 4 −4

Ω̃∗ 2n− 2 15 3 9 11 −4

S̃∗ 2n− 3 15 4 16 18 −6

∆̃∗∗ 2n+ 1 35 0 0 0 0

Σ̃∗∗ 2n 35 1 1 7 4

Ξ̃∗∗ 2n− 1 35 2 4 14 6

Ω̃∗∗ 2n− 2 35 3 9 21 6

S̃∗∗ 2n− 3 35 4 16 28 4

contributions to all baryons. The matrix elements of the
operators can be evaluated using

{S} = (N5 +N6),
{S}{S} = (N5 +N6)2,

{Sσj}{σj} = 2(N5 +N6) + (N5 −N6)
× [(N1 −N2) + (N3 −N4) + (N5 −N6)]

+ 4N5N6 + 2(α1α
†
2α
†
5α6 + α†1α2α5α

†
6

+ α3α
†
4α
†
5α6 + α†3α4α5α

†
6),

{σj}{σj} = 2[(N1 +N2) + (N3 +N4) + (N5 +N6)]
+ 4(N1N2 +N3N4 +N5N6)
+ [(N1 −N2) + (N3 −N4) + (N5 −N6)]2

+ 4(α†1α2α3α
†
4 + α†1α2α5α

†
6 + α1α

†
2α
†
3α4

+ α1α
†
2α
†
5α6 + α3α

†
4α
†
5α6 + α3α

†
4α
†
5α6),

{Sσj}{Uσj} = [(N1 −N2) + (N3 −N4)](N5 −N6)

+ 2(α†1α2α5α
†
6 + α1α

†
2α
†
5α6 + α†3α4α5α

†
6

+ α3α
†
4α
†
5α6). (4.11)

All the matrix elements needed to calculate the baryon
masses are given in Table 1.

The explicit expression of mass corrections at O(ε4)
reads

δM
(4)
B = (2B0)2[(m2

s − m̂2)c1 + 2m̂(ms − m̂)c2]{S}
+
α2

N2
c

2B0(2m̂+ms){σj}{σj}

+ β1(2B0)2(2m̂2 +m2
s). (4.12)

The combination of c1 and c2 terms depends on the
strangeness, and the α2 term gives the next order con-
tribution to the decuplet–octet splitting. Therefore, all of

the above terms can be absorbed into the formulas valid
up to O(ε3).

Then, up to this order, we have three mass relations,

(M1) M∆ −MN = MΣ∗ −MΣ +
3
2

(MΣ −MΛ),

(M2) 3MΛ +MΣ − 2MN − 2MΞ = 0,
(M3) MΩ −MΞ∗ = MΞ∗ −MΣ∗ = MΣ∗ −M∆,

(4.13)

where (M1) is the hyperfine splitting rule, (M2) the Gell-
Mann–Okubo (GMO) relation and (M3) the decuplet
equal spacing (DES) rule.

The O(ε5) correction to the baryon mass has a more
complicated form:

δM
(5)
B =

1
Nc

(2B0)2(ms − m̂)2c2{S}{S}

+
c3
Nc

(2B0)2
[
m̂2{σj}{σj}+(m2

s − m̂2){Sσj}{σj}
]

+
c4
Nc

(2B0)2
[
m̂2{σj}{σj}+(m2

s − m̂2){Sσj}{σj}

−(ms − m̂)2{Uσj}{Sσj}
]

+
c5
Nc

(2B0)2
[
m̂2 + m̂(ms − m̂){Sσj}{σj}

]
+ Nc(d1 + d2 + d3)(2B0m̂)3. (4.14)

There are more terms including c5 and d1,2,3, but they
give contributions only at higher orders. The mass formula
(4.14) includes the operators {S}{S} and {Uσj}{Sσj} in
addition to the operators that appeared already at the
lower order. Because of these new operators, the mass rela-
tions (M2) and (M3) of (4.13) are modified, whereas (M1)
is still valid. Instead of (M2) and (M3), we find improved
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Fig. 3. Best fit of baryon masses (tree) up to O(ε5). Thick
lines represent degenerate states

GMO and DES rules [6,10]:

(M2′) 3MΛ +MΣ − 2(MN +MΞ)
= (MΣ∗ −M∆)− (MΩ −MΞ∗),

(M3′) (MΩ −MΞ∗)− (MΞ∗ −MΣ∗)
= (MΞ∗ −MΣ∗)− (MΣ∗ −M∆), (4.15)

which work better than (M2) and (M3). Empirically, the
left and right hand sides of (M1) give (293 = 308), and
(M2 ) and (M3 ), respectively, lead to (27 = 0) and (139 =
149 = 152), whereas (M2 ′) gives (27 = 11) and (M3 ′)
gives (−3 = −8), where the numbers are given in MeV.
Combining these relations with (M1 ) gives

MΞ∗ −MΞ = MΣ∗ −MΣ , (4.16)
(215 = 192)

where the numbers show again the experimental values.
Note that this is not an independent mass relation. The
modified DES rule (M3 ′) was first derived by Okubo [22]
in the form of

MΩ −M∆ = 3(MΞ∗ −MΣ∗), (4.17)

which is just a re-combination of (M1 ), (M2 ′) and (M3 ′).
Since there are 6 different types of operators up to

O(ε5), we can write the mass formula in a compact form
as

MB = a+ b{σj}{σj}+ c{S}+ d{Sσj}{σj}+ e{S}{S}
+ f{Uσj}{Sσj}, (4.18)

where the c term comes in at O(ε2), the d term at O(ε3),
and the e and f terms at O(ε5). The best χ2 fits to the

Table 2. Best fit of baryon masses (tree) in the unit of MeV
at each order of ε using the formula (4.18)

Particle O(ε1) O(ε2) O(ε3,4) O(ε5) Expt.

N 1142 982 939 937 939
Λ 1142 1141 1117 1119 1116
Σ 1142 1141 1183 1183 1193
Ξ 1142 1300 1328 1327 1318
∆ 1456 1217 1238 1236 1232
Σ∗ 1456 1376 1383 1386 1385
Ξ∗ 1456 1535 1528 1530 1530
Ω 1456 1694 1673 1670 1672√
χ2 424 79 16 15
a 1063.0 923.9 863.7 862.4
b 26.2 19.5 25.0 24.9
c — 159.0 227.8 96.5
d — — −16.6 51.8
e — — — −70.4
f — — — −67.8

baryon masses up toO(ε5) are shown in Table 2 and Fig. 3.
The best fit up to O(ε4) is the same as that of O(ε3). This
is because the mass formula of O(ε4) does not introduce
any new operator. A reasonable baryon mass spectrum is
already found at O(ε3). Corrections from the O(ε5) oper-
ators are evidently not so important. Note also that the
coefficients of the operators involving S include a factor
(ms −m) so that the c, d, e and f terms of (4.18) vanish
in the limit of exact SU(3) flavor symmetry.

Before proceeding to the loop corrections, let us com-
pare our results with those of [11], which uses different
counting so that O(ε′) = O(mq) = O(1/Nc). At the lead-
ing order, the authors of [11] obtained 5 mass relations:

(MΞ −MΣ)− (MΣ −MN ) +
3
2

(MΣ −MΛ)
= 0 (= −13.5),

(MΞ∗ −MΣ∗)− (MΣ∗ −M∆) = 0 (= −8),
(MΩ −MΞ∗)− (MΞ∗ −MΣ∗) = 0 (= −3),
(MΣ −MN )− (MΛ −MN ) = 0 (= 77),
(MΣ∗ −M∆)− (MΛ −MN ) = 0 (= −24), (4.19)

where the numbers in parenthesis on the right hand side
are the empirical ones in MeV. The first three relations
are re-combinations of (M1 ), (M2 ) and (M3 ) and they are
reasonably consistent with experiments. However, the de-
viations of the last two relations are larger compared with
the first three relations. In our scheme, this discrepancy
can be understood easily because the first three relations
hold up to O(ε3) and O(ε4) whereas the last two hold only
up to O(ε2).

5 Loop Corrections to Baryon masses

The one-loop corrections to the baryon masses are ob-
tained from the diagrams shown in Fig. 4. First, let us
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Fig. 4. One-loop corrections to the baryon mass. The filled-
triangle denotes the mass insertion to the intermediate baryon
state and the filled-box represents the meson-meson-baryon-
baryon coupling from the chiral Lagrangian of (4.2a) and (5.21)

consider the diagram of Fig. 4(a) without mass insertions
to the intermediate baryon states, which corresponds to
Fig. 2(a). At first glance, this one-loop correction appears
to be inconsistent with the 1/Nc expansion. Since each ver-
tex carries a factor

√
Nc, the one-loop correction is O(Nc).

A similar feature occurs in the case of the baryon ax-
ial current, where the wave function renormalization part
must be included to give the proper commutator structure
which is essential to be consistent with the 1/Nc expan-
sion. In the case of the baryon self energy, however, there
is no other term that can lead to this commutator struc-
ture. Thus the one-loop correction is not suppressed as
compared to the tree level baryon masses [9]. In fact, this
one-loop correction starts from O(Nc), but we can see that
the corrections of this order are the same to all baryons
so that it can be absorbed in the a0 term of the baryon
mass.

The one-loop baryon self energy is obtained as

ΣB(ω) =
i

2f2
(B|XµaXνa|B)

×
∫

d4k

(2π)4

i

(p− k) · v
i

k2 −m2
aa

(−kµkν), (5.1)

where ω = p · v and Xµa is defined in (3.16). After evalu-
ating the loop integral we find:

δMB = − m3
Π

16πf2
〈OΠ(B)〉, (5.2a)

with

〈OΠ(B)〉 = (B|OΠ |B) =
2
3

(B|
∑
a

XiaXia|B), (5.2b)

where a = 1, 2, 3 for the pion loop, a = 4, . . . , 7 for the
kaon loop, and a = 8 for the eta loop. The operator OΠ
can be computed straightforwardly to give

Oπ = g2

[
N2
c

2
+ 2Nc −

(
Nc +

8
3

)
{S}+

1
6
{S}{S}

− 1
3
{σj}{σj}+

2
3
{Sσj}{σj}

]
+

gh

3Nc
[Nc − {S}+ 2]

[
{σj}{σj} − {Sσj}{σj}

]
+

h2

6N2
c

[
{σi}{σi} − 2{Sσi}{σi}

+ 2{S}+ {S}{S}
]
{σj}{σj}, (5.3a)

OK = g2

[
Nc +

(
Nc +

5
3

)
{S}− 1

3
{Sσj}{σj}− 2

3
{S}{S}

]
+

2gh
3Nc

[
({S}+ 1){σj}{σj}

+ (Nc − 2{S}+ 1){Sσj}{σj}
]

+
h2

3N2
c

[
Nc + (Nc − 1){S}+ {Sσi}{σi}

− 2{S}{S}
]
{σj}{σj}, (5.3b)

Oη = g2

[
{S}+ 1

2
{S}{S}− 1

3
{Sσj}{σj}+ 1

18
{σj}{σj}

]
+

gh

9Nc
[Nc − 3{S}]

[
{σj}{σj} − 3{Sσj}{σj}

]
+

h2

18N2
c

[Nc − 3{S}]2 {σj}{σj}. (5.3c)

There are several remarks concerning this result. As we
discussed before, the pion loop correction Oπ includes the
factor N2

c , which gives a correction of order Nc when com-
bined with the factor 1/f2. Thus it is not consistent with
the 1/Nc expansion. However this term has a trivial op-
erator structure and therefore does not contribute to the
baryon mass differences. Furthermore, because of m3

Π , it
is of O(ε2) and suppressed in comparison with the leading
order of the tree level mass. Secondly, the leading orders
of Oπ, OK and Oη are, respectively, O(N2

c ), O(N1
c ) and

O(N0
c ). The leading order in 1/Nc of each term is given in

Table 3. One would expect that the gh and h2 terms are
suppressed as compared to the g2 term. This is true for
the pion and kaon loop corrections as can be seen from
Table 3. However, in the case of η-meson loop, the gh
and h2 terms are as the same order as the g2 term. This
is similar to what we have seen in the α8 calculation in
Sect. 3. Thus in order to get the correct result for the
η loop corrections, we have to consider n-body operators
in general, unless the coupling constants of such opera-
tors are numerically suppressed. In our estimate, we keep

Table 3. The leading order of operator OΠ depending on the
coupling constants

operator g2 term gh term h2 term

Oπ N2
c N0

c N−2
c

OK N1
c N0

c N−1
c

Oη N0
c N0

c N0
c



Y. Oh et al.: Baryon masses in large Nc chiral perturbation theory 371

terms up to the 2-body operator in Xia, i.e., the h term.
Finally, we note that the g2 terms involve the operators,
{S}, {S}{S}, {σj}{σj} and {Sσj}{σj}, which have al-
ready appeared in the mass formula (4.18). This means
that the g2 terms satisfy the three mass relations, (M1 ),
(M2 ′), and (M3 ′).3 Corrections to the mass relations come
from the gh and h2 terms which include {S}{σj}{σj}, etc.

To estimate the loop correction from Fig. 4(a), we
include the mass insertions to the intermediate baryon
states. Let the mass difference be denoted by δMB′ . Then
the baryon self energy from this diagram reads

Σ(ω) = − 1
f2

(B|Xµa|B′)(B′|Xνa|B)Ĩµν(ω), (5.4)

where

Ĩµν(ω) = −i
∫

d4k

(2π)4

(
1

k · v − ω + δMB′

)
kµkν

m2
aa − k2

.

(5.5)
Calculation of the loop integral gives

δMB = J2(δMB′ ,mΠ) γΠB′(B), (5.6a)

where

γΠB′(B) =
∑
a

(B|Xia|B′)(B′|Xia|B), (5.6b)

with a = 1, 2, 3 for the pion loop, a = 4, . . . , 7 for the kaon
loop and a = 8 for the eta loop, and

J2(x,mA) = − xm2
A

48π2f2

{
2− 3 ln

(mA

λ

)2
}

− 1
12π2f2

(m2
A − x2)3/2 arccos

x

mA

+
x3

24π2f2

{
1− ln

(mA

λ

)2
}
,

for m2
A > x2,

= − xm2
A

48π2f2

{
2− 3 ln

(mA

λ

)2
}

+
1

24π2f2
(x2 −m2

A)3/2 ln
x−

√
x2 −m2

A

x+
√
x2 −m2

A

+
x3

24π2f2

{
1− ln

(mA

λ

)2
}
,

for m2
A < x2. (5.6c)

In the limit δMB′ = 0, we can recover the result (5.2a). In
the case of δMB′ = 0 (or constant), the loop correction can
be represented in terms of the operators given in (5.2b).
This is possible because the loop integral does not depend
on the intermediate baryon state. However, this is not the
case in (5.6a) since the loop integral depends on δMB′ .

3 Note however that the mass relations (M2 ) and (M3 ) re-
ceive corrections from the g2 term.

We can write (5.6a) in a more convenient form as fol-
lows. With the usual definitions,

σ±1 = ∓ 1√
2

(σx ± iσy) , σ0 = σz, (5.7)

we use the Wigner–Eckart theorem,

(γ′, j′, m′ |X(k, q)|γ, j, m)

= (−1)2k (j,m, k, q|j′,m′)√
2j′ + 1

(γ′ j′||X(k)||γ j). (5.8)

Then after some algebra, one can show that

γπB′(B) =
cB
2

∑
a=1±i2,3

(1 + δa3) [(B′||Xa||B)]2,

γKB′(B) =
cB
2

∑
a=4±i5,6±i7

[(B′||Xa||B)]2,

γηB′(B) = cB [(B′||X8||B)]2, (5.9)

where cB = 1/2 for octet baryons and 1/4 for decuplet
baryons. Since

X1+i2,1+i2 = −g
√

2α†1α4 −
h

Nc

√
2(α†1α3 + α†2α4)

× (α†1α2 + α†3α4 + α†5α6), (5.10)

and so on, one can compute the matrix elements γΠB′(B)
using the baryon wave functions given in Appendix A. The
final results for γΠB′(B) are given in Appendix C.

By comparison with (5.2a), we therefore have the re-
lation

OΠ(B) =
2
3

∑
B′

γΠB′(B), (5.11)

which can be obtained by taking δMB′ = 0 in (5.6a).
However, by inserting γΠB′(B) given in Appendix C, one
can find that the above closure relation does not hold with
B′ ∈ {8} and {10} only. This is because we have

1 6=
∑

B′={8},{10}
|B′)(B′|, (5.12)

in the large Nc limit. The equality in the closure relation
holds only for Nc = 3. To form a complete set, we need
an infinite number of states for infinite Nc. However, for-
tunately in our case, Xia is a spin-1 operator. So what we
need in order to satisfy the relation (5.11) is to include the
intermediate baryon states up to spin 5/2. This is done in
Appendix A, where we give all the states B′ of spin 1/2,
3/2, and 5/2 to fulfill (5.11). All these additional states
are fictitious, i.e., they do not exist in the real world with
Nc = 3, but they are needed to satisfy the closure relation
in the large Nc limit. Note also that the baryon self-energy
of (5.6a) starts at O(ε2).

The contribution to the baryon self energy from Fig.
4(b) vanishes for the meson-baryon couplings (3.1). The
contribution of such a diagram comes from the effective
Lagrangian (4.2a). Consider for example the one-loop cor-
rection from L̃(1)

eff of (4.2b) to the baryon self energy. This
one-loop correction comes from the {m} term of L̃(1)

eff ,
which is expanded as
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m = mq −
1

2f2
[Π, [Π,mq]+]+ + . . . , (5.13)

where [A,B]+ = AB +BA. Then the one-loop correction
to the baryon self-energy reads

Σ(ω) = − b1
2f2
{[Π, [Π,mq]+]+}∆Π , (5.14)

where

∆Π = −i
∫

d4k

(2π)4

1
m2
Π − k2

. (5.15)

By evaluating the loop integral using dimensional regular-
ization, we get

δMB =
m2
Π

16π2f2
ln
m2
Π

λ2
(B|PΠ1 |B), (5.16)

where

(B|PΠ1 |B) = −b1
2

∑
a

{[ 1
2λ

a, [1
2λ

a,mq]+]+}. (5.17)

In the same way, we can compute the baryon self energy of
Fig. 4(b) from the higher order terms of (4.2a) to obtain

δMB =
m2
Π

16π2f2
ln
m2
Π

λ2
(B|PΠ |B), (5.18)

where

PΠ =
∑
a

[
−b1

2
{[ 1

2λ
a, [ 1

2λ
a,mq]+]+}

− α1

2
tr
(
[ 1
2λ

a, [ 1
2λ

a,mq]+]+
)

− b2
8Nc
{[λa, [λa,mq]+]+σ

i}{σi}

− c1
4
{mq[λa, [λa,mq]+]+}

− c2
4Nc
{mq}{[λa, [λa,mq]+]+},

− α2

8N2
c

tr
(
[λa, [λa,mq]+]+

)
{σj}{σj}

− β1

4
tr
(
mq[λa, [λa,mq]+]+

)]
. (5.19)

Explicit calculation gives

Pπ =−3
2
b1(2B0m̂)[Nc−{S}]−3(2B0m̂)α1

− 3
2Nc

(2B0m̂)
[
{σi}{σi}−{Sσi}{σi}

]
b2

− 3(2B0m̂)2 [Nc−{S}] c1
− 3
Nc

(2B0m̂)(2B0) [m̂Nc+(ms−m̂){S}] [Nc−{S}] c2

− 3
N2
c

(2B0)m̂{σj}{σj}α2−6(2B0m̂)2β1,

(5.20a)

PK =−1
2
b1(2B0)(m̂+ms)[Nc+{S}]−2(2B0)(m̂+ms)α1

− 1
2Nc

(2B0)(m̂+ms)
[
{σi}{σi}+{Sσi}{σi}

]
b2

− (2B0)(m̂+ms)(2B0) [m̂Nc+(2ms−m̂){S}] c1
− 1
Nc

(2B0)(m̂+ms) [m̂Nc+(ms−m̂){S}]

× [Nc+{S}] c2
− 2
N2
c

(2B0)(ms+m̂){σj}{σj}α2

− 2(2B0)2(ms+m̂)2β1,

(5.20b)

Pη =−1
6
b1(2B0)[m̂Nc+(4ms−m̂){S}]

− 1
3

(2B0)(m̂+2ms)α1

− 1
6Nc

(2B0)
[
m̂{σi}{σi}+(4ms−m̂){Sσi}{σi}

]
b2

− 1
3

(2B0)2
[
m̂2Nc+(4m2

s−m̂2){S}
]
c1

− 1
3Nc

(2B0)2 [m̂Nc+(ms−m̂){S}]

× [m̂Nc+(4ms−m̂){S}] c2
− 1

3N2
c

(2B0)(2ms+m̂){σj}{σj}α2

− 2
3

(2B0)2(2m2
s+m̂2)β1.

(5.20c)

Thus the leading order of this loop correction is O(ε4).
However, there can be other one-loop corrections at

O(ε4) from higher order terms in the chiral Lagrangian,
which can be written as

δLeff = A1{AµAµ}+
A2

Nc
{Aµ}{Aµ}. (5.21)

Generally, terms which involve {(v ·A)2} and {v ·A}{v ·A}
are also possible. However, these terms can be absorbed
into (5.21) because of the following identity in dimensional
regularization [14]:∫

ddk

(2π)d
(v · k)2

m2 − k2
=

1
d

∫
ddk

(2π)d
k2

m2 − k2
. (5.22)

The Lagrangian (5.21) gives the one-loop correction of the
type of Fig. 4(b) as

δMB = − m4
Π

16π2f2
ln
m2
Π

λ2
(B|QΠ |B), (5.23)

where

QΠ =
∑
a

[
A1

4
{λaλa}+

A2

4Nc
{λa}{λa}

]
. (5.24)

The leading order of this term is O(ε4) since
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Qπ =
3A1

4
(Nc − {S}) +

A2

4Nc

[
{σi}{σi} − 2{Sσi}{σi}

+ 2{S}+ {S}{S}
]
, (5.25a)

QK =
A1

2
(Nc + {S}) +

A2

2Nc

[
Nc + (Nc − 1){S}

+ {Sσi}{σi} − 2{S}{S}
]
, (5.25b)

Qη =
A1

12
(Nc + 3{S}) +

A2

12Nc
[Nc − 3{S}]2 . (5.25c)

From the expressions for the operators PΠ and QΠ
of (5.20a) and (5.25a), we can see that these are linear
combinations of the operators that appeared already in
(4.18). This means that the loop corrections of Fig. 4(b)
satisfy the mass relations, (M1 ), (M2 ′) and (M3 ′).

In addition to the one-loop corrections of the previous
calculation, we have to consider one more contribution,
i.e., the 1/MB corrections. They have been calculated in
[13,14] within the framework of baryon chiral perturba-
tion theory. To estimate the 1/MB corrections, one can use
the relativistic form of the effective Lagrangian and then
expand it to obtain the 1/MB terms. Or one may write
down all possible next order terms in 1/MB [26] and then
fix the coefficients by using the so-called “velocity repa-
rameterization invariance” [24]. The two methods should
give the same result. In this paper, therefore, we use the
results of [25] as discussed in [27] for a simple estimate on
the 1/MB corrections.4 If we consider the one-loop self en-
ergy of Fig. 4(a) with the intermediate state baryon mass
MB′ in a fully relativistic theory according to [25], then
we have

δMB =
iβ

2f2

∫
d4k

(2π)4

γ56 k(6P + 6 k +MB′)γ56 k
(k2 −m2

Π)(2P · k + k2)
, (5.26)

where β stands for an SU(3) Clebsch-Gordan coefficient.
By expanding the loop integral, one would have

δMB =
β

16πf2

[
M3
B′

π

(
1
ε
− γE + ln(4π) + 1− lnM2

B′

)
+
MB′m

2
Π

π

(
1
ε
− γE + ln(4π) + 2− lnM2

B′

)
− m3

Π

(
1− mΠ

πMB′

[
1 + ln

MB′

mπ

]
+ . . .

)]
, (5.27)

where ε = d − 4 in dimensional regularization. The first
two terms proportional to M3

B′ and MB′m
2
Π are the trou-

blesome terms as noted by [25]. The m3
Π term is what we

obtained previously, and the m4
Π/MB′ term is the 1/MB

correction we want. Here we note that the 1/MB correc-
tion terms carry the same Clebsch-Gordan coefficient as
the m3

Π term. This was verified by explicit computation
in [14]. We use this result for our estimate of the 1/MB

corrections,

δMB = − m4
Π

16π2f2M0
B

{
1 +

1
2

ln
m2
Π

λ2

}
(B|OΠ |B), (5.28)

4 See also [26] for a critical review.

with OΠ defined in (5.2b). We can use M0
B = a0Nc and

note that the order of this δMB is O(ε4).
Finally, we get the full one-loop correction to the

baryon mass as

δMB =
∑
B′

J2(δMB′ ,mΠ)(B|γΠB′ |B)

− m4
Π

16π2f2M0
B

{
1 +

1
2

ln
m2
Π

λ2

}
(B|OΠ |B)

+
m2
Π

16π2f2
ln
m2
Π

λ2
(B|PΠ |B)

− m4
Π

16π2f2
ln
m2
Π

λ2
(B|QΠ |B), (5.29)

where the operators, OΠ , PΠ and QΠ are respectively
given in (5), (5.20a) and (5.25a), and J2 is defined in
(5.6c). Note that when we calculate the γΠB′ term, we
should include the fictitious intermediate baryon states of
spin up to 5/2. From the structure of the operators, we can
see that the loop corrections to the mass relations (M1 ),
(M2 ′) and (M3 ′) come from the γΠB′ and 1/MB terms, and
the other terms respect the three mass relations. Note also
that the leading contribution to γΠB′ is O(ε2) while those
of OΠ , PΠ and QΠ are O(ε4).

6 Sigma term and strangeness contribution
to the nucleon mass

The pion-nucleon sigma term, defined as

σπN = m̂〈p|ūu+ d̄d|p〉, (6.1)

can be computed from the expression of the nucleon mass
using the Feynman-Hellman theorem:

σπN = m̂
∂MN

∂m̂
. (6.2)

The strange quark contribution to the nucleon mass can
be written as

〈p|mss̄s|p〉 = ms
∂MN

∂ms
. (6.3)

Then we can estimate the strange quark matrix element
(SME) 〈p|mss̄s|p〉 from the mass formulas derived in the
previous Sections.

In this Section, we consider the SME at the tree level.
Up to O(ε1), the nucleon mass is written as

MN = a0Nc +
3
Nc

a1 +Ncm
2
πb1. (6.4)

We find that there is no strange quark contribution to the
nucleon mass at this order:

σπN = Ncm
2
πb1,

〈p|mss̄s|p〉 = 0. (6.5)
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From Table 2, we observe

a = a0Nc +Ncm
2
πb1 = 1063 MeV,

b =
a1

Nc
= 26.2 MeV, (6.6)

where a and b are defined in (4.18). So using σπN = 45
MeV [28], we can fix the three parameters as

a0 = 339.3 [337.7] MeV, a1 = 78.6 MeV,

b1 = 7.88 [8.75]× 10−4 MeV−1, (6.7)

where the values in square brackets correspond to σπN =
50 MeV as suggested by the lattice calculation of [29].

The non-vanishing SME comes from the O(ε2) terms.
The nucleon mass up to this order reads

MN = a0Nc +
3
Nc

a1 +Ncm
2
πb1 + (2m2

K +m2
π)α1, (6.8)

and involves four parameters. We find

σπN = m2
π(Ncb1 + 2α1),

〈p|mss̄s|p〉 = (2m2
K −m2

π)α1, (6.9)

which gives

〈p|mss̄s|p〉 =
1
2

(2m2
K −m2

π)
(
σπN
m2
π

−Ncb1
)
. (6.10)

Note that the SME starts at O(N0
c ) in 1/Nc counting as

pointed out in [10]. From the best fit of Table 2, we get

a = a0Nc +Ncm
2
πb1 + (2m2

K +m2
π)α1 = 923.9 MeV,

b =
a1

Nc
= 19.54 MeV,

c = 2(m2
K −m2

π)b1 = 159 MeV, (6.11)

which gives

a0 = 190.45 [168.05] MeV,
a1 = 58.62 MeV,
b1 = 3.52× 10−4 MeV−1,

α1 = 6.53 [7.85]× 10−4 MeV−1, (6.12)

for σπN = 45 MeV (the values in the square brackets are
for σπN = 50 MeV). Then we have

〈p|mss̄s|p〉 = 307.8 [369.6] MeV. (6.13)

This shows the familiar strong dependence of 〈p|mss̄s|p〉
on the value of σπN . This is because the constant multi-
plying σπN in (6.10) is as large as 12.4. For example, if we
use σπN = 65 MeV, we find 555 MeV for the SME.

However, we have to include at least the O(ε3) terms to
get a more reliable value of SME because the fitted baryon
mass spectra is reasonably consistent with the experiment

from this order onward. For the nucleon mass we have two
additional terms so that

MN = a0Nc +
3
Nc

a1 +Ncm
2
πb1 + (2m2

K +m2
π)α1

+
3
Nc

m2
πb2 +m4

πNc(c1 + c2). (6.14)

Although there are altogether 7 parameters in the La-
grangian, we have only 6 independent parameters since c1
and c2 enter in the form (c1 + c2) for all baryon masses.
The final result is:

σπN = m2
π[Ncb1 + 2α1 +

3
Nc

b2 + 2Ncm2
π(c1 + c2)],

〈p|mss̄s|p〉 = (2m2
K −m2

π)α1, (6.15)

which implies

〈p|mss̄s|p〉 =
1
2

(2m2
K −m2

π)

×
{
σπN
m2
π

−Ncb1−
3
Nc

b2−2Ncm2
π(c1+c2)

}
.

(6.16)

To estimate this matrix element, we must determine the
parameters. Not all of them can be fixed, however, since
there are 6 parameters while we have only 5 pieces of in-
formation: four from baryon masses and one from the πN
sigma term. From Table 2, we have

a = a0Nc +Ncm
2
πb1 + (2m2

K +m2
π)α1 +Ncm

4
π(c1 + c2)

= 863.7 MeV,

b =
a1

Nc
+
m2
π

Nc
b2 = 25.0 MeV,

c = 2(m2
K −m2

π)b1 = 227.8 MeV,

d =
2
Nc

(m2
K −m2

π)b2 = −16.6 MeV, (6.17)

which gives

a1 = 77.03 MeV,
b1 = 5.04× 10−4 MeV−1,

b2 = −1.10× 10−4 MeV−1. (6.18)

Note that these best fit values of a1 and b1 at O(ε3) are
between the values found at O(ε1) and at O(ε2). Since
the other parameters cannot be determined uniquely, we
rewrite the SME of (6.16) in the form:

〈p|mss̄s|p〉 =
1
2

(
1− m2

π

2m2
K

)
×
{

2(a−a0Nc)−σπN−m2
π

(
Ncb1−

3
Nc

b2

)}
,

(6.19)

where we have expressed (c1 + c2) in terms of σπN and
a. Since a is fixed by the mass spectrum, therefore, the
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SME of the above form depends on the unfixed parameter
a0. For a numerical estimate we can use the fitted values
of a0 from the calculations at O(ε1) and O(ε2), i.e., a0 =
190 ∼ 340 MeV. This leads to 〈p|mss̄s|p〉 ranging between
about 250 MeV and −190 MeV. Now the dependence on
the πN sigma term is very weak, while it depends strongly
on the value of a0, leaving 〈p|mss̄s|p〉 almost completely
uncertain.

At O(ε4) and O(ε5), the situation becomes even more
subtle. There are 9 parameters with 5 pieces of information
in case of O(ε4). If we take into account the corrections
from O(ε5), then we have 13 effective parameters5 with 7
constraints. Additional information is therefore required
such as isospin symmetry breaking effects in the baryon
spectra and/or KN sigma terms [30]. As a reference, we
give the formulas of the sigma term and the SME up to
O(ε4) below:

σπN = m2
π

{
Ncb1 + 2α1 +

3
Nc

b2 + 2Ncm2
π(c1 + c2)

+
6
N2
c

α2 + 4m2
πβ1

}
,

〈p|mss̄s|p〉 = (2m2
K −m2

π)

×
{
α1 +

3
N2
c

α2 + 2(2m2
K −m2

π)β1

}
, (6.20)

where

a = a0Nc +Ncm
2
πb1 + (2m2

K +m2
π)α1 +Ncm

4
π(c1 + c2)

+ (4m2
K − 4m2

Km
2
π + 3m4

π)β1 = 863.7 MeV,

b =
a1

Nc
+
m2
π

Nc
b2 +

1
N2
c

(2m2
K +m2

π)α2 = 25.0 MeV,

c = 2(m2
K −m2

π)b1 + 4(m2
K −m2

π)[m2
Kc1 +m2

πc2]
= 227.8 MeV,

d =
2
Nc

(m2
K −m2

π)b2 = −16.6 MeV. (6.21)

In essence one observes that corrections beyond the stan-
dard estimate (6.10) for 〈p|mss̄s|p〉 are so large that they
prohibit quantitative conclusions about the strange quark
contribution to the nucleon mass.

7 Summary and Discussion

In summary, we have re-analyzed baryon masses within
baryon chiral perturbation theory in combination with the
large Nc expansion. Before computing the baryon masses,
we have calculated the baryon axial current. We find that
the two diagrams of Fig. 1 give contributions of the same
order in 1/Nc counting. Inclusion of the wave function
renormalization terms is crucial to get the right order
for the one-loop corrections because this gives the proper

5 There are totally 15 parameters up to O(ε5) calculation.
However, the three parameters d1,2,3 appear only in the form
of (d1 + d2 + d3) at this order. So there are effectively 13 pa-
rameters.

commutator structure to the baryon axial current opera-
tor. However, when calculating α8

B′B , two-body operators
give contributions of the same order as one-body opera-
tors. Unless the coupling constants of the general n-body
operators are suppressed numerically, their effects must
be included in order to be consistent with the 1/Nc ex-
pansion.

Next, we have considered the baryon mass spectrum in
this scheme. For this aim, we have used that both mΠ and
1/δM scale as O(ε), where mΠ and δM , respectively, rep-
resent the Goldstone boson mass and the octet-decuplet
mass splitting which depends on 1/Nc. At the tree level,
we found that the empirical mass spectrum is well repro-
duced to O(ε3) and the corrections from O(ε5) are not so
crucial. But the Gell-Mann - Okubo mass relation and the
equal spacing rule in the decuplet are modified at O(ε5).
At the one-loop level, there is no additional contribution
that gives the characteristic commutator structure, and
the loop corrections seem to violate the 1/Nc expansion.
However, the leading terms are constant for all baryon
states and can be safely absorbed into the central baryon
mass in the chiral limit. The meson loop corrections in-
volving the operators OΠ with the coupling constant g,
PΠ and QΠ of (5.29) satisfy the modified mass relations
(M1 ), (M2 ′) and (M3 ′). To get the correct result, the
intermediate baryon states must include fictitious states
of spin up to 5/2 in order to satisfy the closure relation,∑
B |B)(B| = 1, for the spin-1 operator Xia in the large

Nc limit. As in the calculation of α8
B′B , the η-meson loop

corrections to the baryon self energy require general n-
body operators in order to be consistent with the 1/Nc
expansion.

Finally we have estimated the strangeness contribu-
tion to the nucleon mass at the tree level. We confirmed
that this matrix element is O(N0

c ) in the 1/Nc count-
ing. At leading order, namely O(ε2), this contribution can
amount to more than 300 MeV. At the next order, we
cannot uniquely determine the mass parameters because
of lack of independent empirical information. But the up-
per bound of the strangeness contribution to the nucleon
mass is now reduced to around 250 MeV.

We thank N. Kaiser for useful discussions. One of us (Y.O.)
acknowledges the financial support from the Alexander von
Humboldt Foundation. This work was supported in part by
the Korea Science and Engineering Foundation through CTP
of Seoul National University.

A Baryon States

The octet and decuplet baryons states |B, jz) in the num-
ber space are given in this Appendix. For simplicity we
give only the sz = +1/2 states for baryon octet and
sz = +3/2 states for baryon decuplet. Other spin states
can be obtained straightforwardly. The octet states are

|p,+1
2 ) = CN α

†
1 (A†s)

n|0),

|n,+ 1
2 ) = CN α

†
3 (A†s)

n|0), (A1)
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|Λ,+1
2 ) = −CΛ α†5 (A†s)

n|0), (A2)

|Σ+,+ 1
2 ) = −CΣ α†1 (A†d) (A†s)

n−1|0),

|Σ0,+ 1
2 ) =

1√
2
CΣ {α†1A†u + α†3A

†
d} (A†s)

n−1|0),

|Σ−,+ 1
2 ) = CΣ α

†
3A
†
u (A†s)

n−1|0), (A3)

|Ξ0,+ 1
2 ) = −CΞ α†5A†d (A†s)

n−1|0),

|Ξ−,+ 1
2 ) = CΞ α

†
5A
†
u (A†s)

n−1|0), (A4)

where A†u = α†3α
†
6 − α†4α†5, A†d = α†1α

†
6 − α†2α†5 and A†s =

α†1α
†
4 − α†2α†3, with the normalization constants

[n!CN ]2 =
2

(n+ 1)(n+ 2)
,

[n!CΛ]2 =
1

n+ 1
,

[(n− 1)!CΣ ]2 =
2

n(n+ 1)(n+ 2)
,

[(n− 1)!CΞ ]2 =
2

3n(n+ 1)
,

(A5)

from the condition (B, jz|B, jz) = 1, where Nc = 2n + 1.
The negative signs of some states were introduced to be
consistent with the quark model convention [31]. Explic-
itly the spin-up proton state can be written as

|p,+ 1
2 ) = CN

n∑
k=0

n!
k!(n− k)!

(−1)k|n−k+1, k, k, n−k, 0, 0),

(A6)
by making use of

(A+B)n =
n∑
k=0

n!
k!(n− k)!

An−kBk. (A7)

The decuplet states are as follows:

|∆++,+ 3
2 ) = C∆ α

†
1 α
†
1 α
†
1 (A†s)

n−1|0),

|∆+,+ 3
2 ) =

√
3C∆ α

†
1 α
†
1 α
†
3 (A†s)

n−1|0),

|∆0,+ 3
2 ) =

√
3C∆ α

†
1 α
†
3 α
†
3 (A†s)

n−1|0),

|∆−,+ 3
2 ) = C∆ α

†
3 α
†
3 α
†
3 (A†s)

n−1|0), (A8)

|Σ∗+,+ 3
2 ) = CΣ∗ α

†
1 α
†
1 α
†
5 (A†s)

n−1|0),

|Σ∗0,+ 3
2 ) =

√
2CΣ∗ α

†
1 α
†
3 α
†
5 (A†s)

n−1|0),

|Σ∗−,+ 3
2 ) = CΣ∗ α

†
3 α
†
3 α
†
5 (A†s)

n−1|0), (A9)

|Ξ∗0,+ 3
2 ) = CΞ∗ α

†
1 α
†
5 α
†
5 (A†s)

n−1|0),

|Ξ∗−,+ 3
2 ) = CΞ∗ α

†
3 α
†
5 α
†
5 (A†s)

n−1|0), (A10)

|Ω,+3
2 ) = C∗Ω α

†
5 α
†
5 α
†
5 (A†s)

n−1|0), (A11)

where

[(n− 1)!C∆]2 =
4

n(n+ 1)(n+ 2)(n+ 3)
,

[(n− 1)!CΣ∗ ]
2 =

3
n(n+ 1)(n+ 2)

,

[(n− 1)!CΞ∗ ]
2 =

1
n(n+ 1)

,

[(n− 1)!CΩ ]2 =
1

6n
.

(A12)

However, the octet and decuplet states are not suf-
ficient to satisfy the closure relation (5.11) in the large
Nc limit, and we have to include higher spin states. Since
Xia is a spin-1 operator, it is sufficient to introduce fic-
titious states up to spin 5/2. These states are distin-
guished from the octet/decuplet by a tilde and we denote
the strangeness S = −4 states by |S). These states can
be obtained by considering 5-quark states multiplied by
(A†s)

n−2, whereas the conventional octet and decuplet are
formed by 3-quark states with (A†s)

n−1. Then the fictitious
states of spin 1/2 are

|Ξ̃1,+1
2 ) = CΞ̃ α

†
1A
†
dA
†
d (A†s)

n−2|0),

|Ξ̃2,+1
2 ) =

1√
3
CΞ̃

{
2α†1A

†
u + α†3A

†
d

}
A†d (A†s)

n−2|0),

|Ξ̃3,+1
2 ) =

1√
3
CΞ̃

{
α†1A

†
u + 2α†3A

†
d

}
A†u (A†s)

n−2|0),

|Ξ̃4,+1
2 ) = CΞ̃ α

†
3A
†
uA
†
u (A†s)

n−2|0), (A13)

|Ω̃1,+1
2 ) = CΩ̃ α

†
5A
†
dA
†
d (A†s)

n−2|0),

|Ω̃2,+1
2 ) =

√
2CΩ̃ α

†
5A
†
uA
†
d (A†s)

n−2|0),

|Ω̃3,+1
2 ) = CΩ̃ α

†
5A
†
uA
†
u (A†s)

n−2|0), (A14)

where

[(n− 2)!CΞ̃ ]2 =
1

(n− 1)n(n+ 1)(n+ 2)
,

[(n− 2)!CΩ̃ ]2 =
1

4(n− 1)n(n+ 1)
. (A15)

For the spin 3/2 states, we have

|Σ̃∗1 ,+3
2 ) = CΣ̃∗ α

†
1 α
†
1 α
†
1A
†
d(A

†
s)
n−2|0),

|Σ̃∗2 ,+3
2 ) =

1
2
CΣ̃∗

{
α†1 α

†
1 α
†
1A
†
u + 3α†1 α

†
1 α
†
3A
†
d

}
× (A†s)

n−2|0),

|Σ̃∗3 ,+3
2 ) =

√
3
2
CΣ̃∗

{
α†1 α

†
1 α
†
3A
†
u + α†1 α

†
3 α
†
3A
†
d

}
× (A†s)

n−2|0),

|Σ̃∗4 ,+3
2 ) =

1
2
CΣ̃∗

{
3α†1 α

†
3 α
†
3A
†
u + α†3 α

†
3 α
†
3A
†
d

}
× (A†s)

n−2|0),

|Σ̃∗5 ,+3
2 ) = CΣ̃∗ α

†
3 α
†
3 α
†
3A
†
u(A†s)

n−2|0), (A16)
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|Ξ̃∗1 ,+ 3
2 ) = CΞ̃∗ α

†
1 α
†
1 α
†
5A
†
d(A

†
s)
n−2|0),

|Ξ̃∗2 ,+ 3
2 ) =

1√
3
CΞ̃∗

{
α†1 α

†
1 α
†
5A
†
u + 2α†1 α

†
3 α
†
5A
†
d

}
× (A†s)

n−2|0),

|Ξ̃∗3 ,+ 3
2 ) =

1√
3
CΞ̃∗

{
2α†1 α

†
3 α
†
5A
†
u + α†3 α

†
3 α
†
5A
†
d

}
× (A†s)

n−2|0),

|Ξ̃∗4 ,+ 3
2 ) = CΞ̃∗ α

†
3 α
†
3 α
†
5A
†
u(A†s)

n−2|0), (A17)

|Ω̃∗1 ,+ 3
2 ) = CΩ̃∗ α

†
1 α
†
5 α
†
5A
†
d(A

†
s)
n−2|0),

|Ω̃∗2 ,+ 3
2 ) =

1√
2
CΩ̃∗

{
α†1 α

†
5 α
†
5A
†
u + α†3 α

†
5 α
†
5A
†
d

}
× (A†s)

n−2|0),

|Ω̃∗3 ,+ 3
2 ) = CΩ̃∗ α

†
3 α
†
5 α
†
5A
†
u(A†s)

n−2|0), (A18)

|S̃∗1,+ 3
2 ) = CS̃∗ α

†
5 α
†
5 α
†
5A
†
d(A

†
s)
n−2|0),

|S̃∗2,+ 3
2 ) = CS̃∗ α

†
5 α
†
5 α
†
5A
†
u(A†s)

n−2|0), (A19)

where

[(n− 2)!CΣ̃∗ ]
2 =

4
(n− 1)n(n+ 1)(n+ 2)(n+ 3)

,

[(n− 2)!CΞ̃∗ ]
2 =

12
5(n− 1)n(n+ 1)(n+ 2)

,

[(n− 2)!CΩ̃∗ ]
2 =

3
5(n− 1)n(n+ 1)

,

[(n− 2)!CS̃∗ ]
2 =

1
15(n− 1)n

. (A20)

The possible spin 5/2 states are

|∆̃∗∗1 ,+ 5
2 ) = C∆̃∗∗ α

†
1 α
†
1 α
†
1 α
†
1 α
†
1 (A†s)

n−2|0),

|∆̃∗∗2 ,+ 5
2 ) =

√
5C∆̃∗∗ α

†
1 α
†
1 α
†
1 α
†
1 α
†
3 (A†s)

n−2|0),

|∆̃∗∗3 ,+ 5
2 ) =

√
5C∆̃∗∗ α

†
1 α
†
1 α
†
1 α
†
3 α
†
3 (A†s)

n−2|0),

|∆̃∗∗4 ,+ 5
2 ) =

√
10C∆̃∗∗ α

†
1 α
†
1 α
†
3 α
†
3 α
†
3 (A†s)

n−2|0),

|∆̃∗∗5 ,+ 5
2 ) =

√
5C∆̃∗∗ α

†
1 α
†
3 α
†
3 α
†
3 α
†
3 (A†s)

n−2|0),

|∆̃∗∗6 ,+ 5
2 ) = C∆̃∗∗ α

†
3 α
†
3 α
†
3 α
†
3 α
†
3 (A†s)

n−2|0), (A21)

|Σ̃∗∗1 ,+ 5
2 ) = CΣ̃∗∗ α

†
1 α
†
1 α
†
1 α
†
1 α
†
5 (A†s)

n−2|0),

|Σ̃∗∗2 ,+ 5
2 ) = 2CΣ̃∗∗ α

†
1 α
†
1 α
†
1 α
†
3 α
†
5 (A†s)

n−2|0),

|Σ̃∗∗3 ,+ 5
2 ) =

√
6CΣ̃∗∗ α

†
1 α
†
1 α
†
3 α
†
3 α
†
5 (A†s)

n−2|0),

|Σ̃∗∗4 ,+ 5
2 ) = 2CΣ̃∗∗ α

†
1 α
†
3 α
†
3 α
†
3 α
†
5 (A†s)

n−2|0),

|Σ̃∗∗5 ,+ 5
2 ) = CΣ̃∗∗ α

†
3 α
†
3 α
†
3 α
†
3 α
†
5 (A†s)

n−2|0), (A22)

|Ξ̃∗∗1 ,+ 5
2 ) = CΞ̃∗∗ α

†
1 α
†
1 α
†
1 α
†
5 α
†
5 (A†s)

n−2|0),

|Ξ̃∗∗2 ,+ 5
2 ) =

√
3CΞ̃∗∗ α

†
1 α
†
1 α
†
3 α
†
5 α
†
5 (A†s)

n−2|0),

|Ξ̃∗∗3 ,+ 5
2 ) =

√
3CΞ̃∗∗ α

†
1 α
†
3 α
†
3 α
†
5 α
†
5 (A†s)

n−2|0),

|Ξ̃∗∗4 ,+ 5
2 ) = CΞ̃∗∗ α

†
3 α
†
3 α
†
3 α
†
5 α
†
5 (A†s)

n−2|0), (A23)

|Ω̃∗∗1 ,+ 5
2 ) = CΩ̃∗∗ α

†
1 α
†
1 α
†
5 α
†
5 α
†
5 (A†s)

n−2|0),

|Ω̃∗∗2 ,+ 5
2 ) =

√
2CΩ̃∗∗ α

†
1 α
†
3 α
†
5 α
†
5 α
†
5 (A†s)

n−2|0),

|Ω̃∗∗3 ,+ 5
2 ) = CΩ̃∗∗ α

†
3 α
†
3 α
†
5 α
†
5 α
†
5 (A†s)

n−2|0), (A24)

|S̃∗∗1 ,+ 5
2 ) = CS̃∗∗ α

†
1 α
†
5 α
†
5 α
†
5 α
†
5 (A†s)

n−2|0),

|S̃∗∗2 ,+ 5
2 ) = CS̃∗∗ α

†
3 α
†
5 α
†
5 α
†
5 α
†
5 (A†s)

n−2|0), (A25)

where

[(n− 2)!C∆̃∗∗ ]
2 =

6
(n− 1)n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

,

[(n− 2)!CΣ̃∗∗ ]
2 =

5
(n− 1)n(n+ 1)(n+ 2)(n+ 3)

,

[(n− 2)!CΞ̃∗∗ ]
2 =

2
(n− 1)n(n+ 1)(n+ 2)

,

[(n− 2)!CΩ̃∗∗ ]
2 =

1
2(n− 1)n(n+ 1)

,

[(n− 2)!CS̃∗∗ ]
2 =

1
12(n− 1)n

. (A26)

Note that the ∆̃, Σ̃, Ξ̃, Ω̃ and S̃ families have isospin
5/2, 2, 3/2, 1 and 1/2, respectively, and their normaliza-
tion constants contain the factor 1/(n − 1) so that these
states can not be defined with Nc = 3. Using the results
given in Appendix C, one can find that these fictitious
states ensure the relation (5.11).

B Explicit results of βi,ΠBB′

In this Appendix, we give the explicit results of βi,ΠBB′ and
β̃i,ΠBB′ of (3.22) from the g term of (3.1):

β1+i2,π
pn = −2

3
(Nc + 2)g3 − 1

3
(Nc + 2)g,

β1+i2,K
pn = −1

2
(Nc + 2)g3 − 1

6
(Nc + 2)g,

β1+i2,η
pn = −1

9
(Nc + 2)g3, (B1)

β1+i2,π
ΛΣ− = − 2

3
√

2

√
(Nc − 1)(Nc + 3)g3

− 1
3
√

2

√
(Nc − 1)(Nc + 3)g,

β1+i2,K
ΛΣ− = − 1

2
√

2

√
(Nc − 1)(Nc + 3)g3

− 1
6
√

2

√
(Nc − 1)(Nc + 3)g,

β1+i2,η
ΛΣ− = − 1

9
√

2

√
(Nc − 1)(Nc + 3)g3, (B2)

β1+i2,π
Ξ0Ξ− = −2Nc

9
g3 − Nc

9
g,

β1+i2,K
Ξ0Ξ− = −Nc

6
g3 − Nc

18
g,

β1+i2,η
Ξ0Ξ− = −Nc

27
g3, (B3)
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β1+i2,π
Σ0Σ− = − 2

3
√

2
(Nc + 1)g3 − 1

3
√

2
(Nc + 1)g,

β1+i2,K
Σ0Σ− = − 1

2
√

2
(Nc + 1)g3 − 1

6
√

2
(Nc + 1)g,

β1+i2,η
Σ0Σ− = − 1

9
√

2
(Nc + 1)g3, (B4)

and

β4+i5,π
pΛ =

9
16

√
Nc + 3g3 +

3
16

√
Nc + 3g,

β4+i5,K
pΛ = 2β4+i5,π

pΛ ,

β4+i5,η
pΛ =

11
48

√
Nc + 3g3 +

3
16

√
Nc + 3g, (B5)

β4+i5,π
ΛΞ− = − 9

16
√

3

√
Nc − 1g3 − 1

16

√
3(Nc − 1)g,

β4+i5,K
ΛΞ− = 2β4+i5,π

pΛ ,

β4+i5,η
ΛΞ− = − 11

48
√

3

√
Nc − 1g3− 1

16

√
3(Nc − 1)g, (B6)

β4+i5,π
pΣ0 = − 3

16

√
Nc − 1g3 − 1

16

√
Nc − 1g,

β4+i5,K
pΣ0 = 2β4+i5,π

pΛ ,

β4+i5,η
pΣ0 = − 11

144

√
Nc − 1g3 − 1

16

√
Nc − 1g, (B7)

β4+i5,π
Σ0Ξ− = −5

√
3

16

√
Nc + 3g3 − 5

√
3

48

√
Nc + 3g,

β4+i5,K
Σ0Ξ− = 2β4+i5,π

pΛ ,

β4+i5,η
Σ0Ξ− = −55

√
3

432

√
Nc + 3g3 − 5

√
3

48

√
Nc + 3g. (B8)

For β8, we have

β8,π
pp = − 3

2
√

3
g3, β8,K

pp = − 1
4
√

3
g3 − 3

4
√

3
g,

β8,η
pp = − 1

6
√

3
g3,

β8,π
ΛΛ = 0, β8,K

ΛΛ =
5

2
√

3
g3 +

3
2
√

3
g,

β8,η
ΛΛ =

4
3
√

3
g3,

β8,π
ΣΣ = − 2√

3
g3, β8,K

ΣΣ = − 7
6
√

3
g3 − 3

2
√

3
g,

β8,η
ΣΣ = − 2

3
√

3
g3,

β8,π
ΞΞ =

2√
3
g3, β8,K

ΞΞ =
41

12
√

3
g3 +

9
4
√

3
g,

β8,η
ΞΞ =

11
6
√

3
g3.

(B9)

The constants β̃i,ΠB′B are the same as the g3 terms of
βi,ΠB′B .

C Matrix Elements of γΠB′(B)

In this Appendix we give the matrix elements of γΠB′(B).

γπN (N) =
1

4N2
c

[Nc(Nc + 2)g + 3h]2,

γπ∆(N) =
1
2

(Nc − 1)(Nc + 5)g2,

γKΛ (N) =
3(Nc + 3)

8N2
c

[Nc g + h]2,

γKΣ (N) =
Nc − 1
8N2

c

[Nc g − 3h]2,

γKΣ∗(N) = (Nc − 1)g2,

γηN (N) =
1
4

[g + h]2,

γη∆(N) = 0.

(C1)

γπΛ(Λ) = 0,

γπΣ(Λ) =
1
4

(Nc − 1)(Nc + 3)g2,

γπΣ∗(Λ) =
1
2

(Nc − 1)(Nc + 3)g2,

γKN (Λ) =
3(Nc + 3)

4N2
c

[Nc g + h]2,

γK∆ (Λ) = 0,

γKΞ (Λ) =
Nc − 1
4N2

c

[Nc g + 3h]2,

γKΞ∗(Λ) = 2(Nc − 1)g2,

γηΛ(Λ) =
1

4N2
c

[2Nc g − (Nc − 3)h]2,

γηΣ(Λ) = 0

γηΣ∗(Λ) = 0.

(C2)

γπΛ(Σ) =
1
12

(Nc − 1)(Nc + 3)g2,

γπΣ(Σ) =
1

6N2
c

[Nc(Nc + 1)g + 6h]2,

γπΣ∗(Σ) =
1
12

(Nc + 1)2g2,

γKN (Σ) =
Nc − 1
12N2

c

[Nc g − 3h]2,

γK∆ (Σ) =
2
3

(Nc + 5)g2,

γKΞ (Σ) =
Nc + 3
36N2

c

[5Nc g + 3h]2,

γKΞ∗(Σ) =
2
9

(Nc + 3)g2,

γηΛ(Σ) = 0,

γηΣ(Σ) =
1

4N2
c

[2Nc g + (Nc − 3)h]2,

γηΣ∗(Σ) = 2g2.

(C3)
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γπΞ(Ξ) =
1

36N2
c

[N2
c g − 9h]2,

γπΞ∗(Ξ) =
2
9
N2
c g

2,

γKΛ (Ξ) =
Nc − 1
8N2

c

[Nc g + 3h]2,

γKΣ (Ξ) =
Nc + 3
24N2

c

[5Nc g + 3h]2,

γKΣ∗(Ξ) =
1
3

(Nc + 3)g2,

γKΩ (Ξ) = (Nc + 1)g2,

γηΞ(Ξ) =
1

4N2
c

[3Nc g − (Nc − 6)h]2,

γηΞ∗(Ξ) = 2g2.

(C4)

γπN (∆) =
1
8

(Nc − 1)(Nc + 5)g2,

γπ∆(∆) =
1

4N2
c

[Nc(Nc + 2)g + 15h]2,

γKΛ (∆) = 0,

γKΣ (∆) =
1
4

(Nc + 5)g2,

γKΣ∗(∆) =
5(Nc + 5)

16N2
c

[Nc g + 3h]2,

γηN (∆) = 0,

γη∆(∆) =
5
4

[g + h]2.

(C5)

γπΛ(Σ∗) =
1
12

(Nc − 1)(Nc + 3)g2,

γπΣ(Σ∗) =
1
24

(Nc + 1)2g2,

γπΣ∗(Σ
∗) =

5
24N2

c

[Nc(Nc + 1)g + 12h]2,

γKN (Σ∗) =
1
3

(Nc − 1)g2,

γK∆ (Σ∗) =
5(Nc + 5)

12N2
c

[Nc g + 3h]2,

γKΞ (Σ∗) =
1
9

(Nc + 3)g2,

γKΞ∗(Σ
∗) =

5(Nc + 3)
9N2

c

[Nc g + 3h]2,

γηΛ(Σ∗) = 0,

γηΣ(Σ∗) = g2,

γηΣ∗(Σ
∗) =

5(Nc − 3)2

4N2
c

h2.

(C6)

γπΞ(Ξ∗) =
1
9
N2
c g

2,

γπΞ∗(Ξ
∗) =

5
36N2

c

[N2
c g + 9h]2,

γKΛ (Ξ∗) =
1
2

(Nc − 1)g2,

γKΣ (Ξ∗) =
1
6

(Nc + 3)g2,

γKΣ∗(Ξ
∗) =

5(Nc + 3)
6N2

c

[Nc g + 3h]2,

γKΩ (Ξ∗) =
5(Nc + 1)

8N2
c

[Nc g + 3h]2,

γηΞ(Ξ∗) = g2,

γηΞ∗(Ξ
∗) =

5
4N2

c

[Nc g − (Nc − 6)h]2.

(C7)

γπΩ(Ω) = 0,

γKΞ (Ω) = (Nc + 1)g2,

γKΞ∗(Ω) =
5(Nc + 1)

4N2
c

[Nc g + 3h]2,

γηΩ(Ω) =
5

4N2
c

[2Nc g − (Nc − 9)h]2.

(C8)

For the fictitious intermediate states, we have

γπ
Σ̃∗

(Σ) =
5
12

(Nc − 3)(Nc + 5)g2,

γK
Ξ̃

(Σ) =
2(Nc − 3)

9N2
c

[Nc g − 3h]2,

γK
Ξ̃∗

(Σ) =
10
9

(Nc − 3)g2.

(C9)

γπ
Ξ̃

(Ξ) =
2
9

(Nc − 3)(Nc + 3)g2,

γπ
Ξ̃∗

(Ξ) =
5
18

(Nc − 3)(Nc + 3)g2,

γK
Ω̃

(Ξ) =
(Nc − 3)

3N2
c

[Nc g + 3h]2,

γK
Ω̃∗

(Ξ) =
15
9

(Nc − 3)g2.

(C10)

γπ
∆̃∗∗

(∆) =
3
8

(Nc − 3)(Nc + 7)g2,

γK
Σ̃∗

(∆) =
3(Nc − 3)

16N2
c

[Nc g − 5h]2,

γK
Σ̃∗∗

(∆) =
3
4

(Nc − 3)g2.

(C11)



380 Y. Oh et al.: Baryon masses in large Nc chiral perturbation theory

γπ
Σ̃∗

(Σ∗) =
1
24

(Nc − 3)(Nc + 5)g2,

γπ
Σ̃∗∗

(Σ∗) =
3
8

(Nc − 3)(Nc + 5)g2,

γK
Ξ̃

(Σ∗) =
1
18

(Nc − 3)g2,

γK
Ξ̃∗

(Σ∗) =
(Nc − 3)

36N2
c

[Nc g − 15h]2,

γK
Ξ̃∗∗

(Σ∗) =
3
2

(Nc − 3)g2.

(C12)

γπ
Ξ̃

(Ξ∗) =
1
72

(Nc − 3)(Nc + 3)g2,

γπ
Ξ̃∗

(Ξ∗) =
1
9

(Nc − 3)(Nc + 3)g2,

γπ
Ξ̃∗∗

(Ξ∗) =
3
8

(Nc − 3)(Nc + 3)g2,

γK
Ω̃

(Ξ∗) =
1
12

(Nc − 3)g2,

γK
Ω̃∗

(Ξ∗) =
(Nc − 3)

24N2
c

[Nc g + 15h]2,

γK
Ω̃∗∗

(Ξ∗) =
9
4

(Nc − 3)g2.

(C13)

γπ
Ω̃

(Ω) =
1
8

(Nc − 3)(Nc + 1)g2,

γπ
Ω̃∗

(Ω) =
1
4

(Nc − 3)(Nc + 1)g2,

γπ
Ω̃∗∗

(Ω) =
3
8

(Nc − 3)(Nc + 1)g2,

γK
S̃∗

(Ω) =
3(Nc − 3)

4N2
c

[Nc g + 5h]2,

γK
S̃∗∗

(Ω) = 3(Nc − 3)g2,

(C14)

and the others are zero. Note that all the matrix elements
with fictitious intermediate state contain the factor (Nc−
3) so that they vanish in the real world with Nc = 3.
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